
Централизованное тестирование по математике, 2022

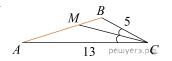
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Используя данные рисунка, найдите градусную меру угла 1 треугольника ABC.

- 1) 45° 2) 50° 3) 55° 4) 60° 5) 65°
- 2. Среди чисел 31; 43; 15; 23; 17 укажите то, которое является составным.
 - 1) 31 2) 43 3) 15 4) 23 5) 17
- 3. Определите, на сколько неизвестное уменьшаемое больше вычитаемого, если известно, что x - 10 = 30.
 - 1) 10 4) 30 2) 20 3) 40 5) 60
 - **4.** Используя рисунок, определите верное утверждение и укажите его номер. m

- 1) 2-m < 2-n 2) n+7 < m 3) m-n > 0 4) m+5 > n+7 5) m+5 < n+7
- **5.** Функция y = f(x) задана на множестве действительных чисел и является убывающей на области определения. Среди ее значений f(6,62); $f\left(\frac{51}{7}\right)$; $f\left(\frac{4\pi}{3}\right)$; $f(\sqrt{26})$; $f(4\pi)$ укажите наибольшее.


1)
$$f(6,62)$$
 2) $f\left(\frac{51}{7}\right)$ 3) $f\left(\frac{4\pi}{3}\right)$ 4) $f(\sqrt{26})$ 5) $f(4\pi)$

6. За n коробок конфет было заплачено 152 руб. 20 коп., а за n коробок печенья — b руб. Составьте выражение, которое определяет, на сколько копеек коробка печенья дешевле коробки конфет.

1)
$$\frac{152,2-b}{n}$$
 2) $\frac{15220-100b}{n}$ 3) $\frac{152,2-b}{100n}$ 4) $\frac{15220+100b}{n}$ 5) $\frac{(152,2-b)n}{100}$

- 7. Когда рабочий сделал 369 деталей, ему до выполнения плана оставалось 59%. Сколько деталей должен сделать рабочий по плану?
 - 4) 15 129 1) 900 2) 625 3) 899 5) 21 771

8. Используя данные рисунка, найдите длину стороны AB треугольника ABC, если AM - BM = 4.

9. Найдите значение выражения $(\sqrt{24} - \sqrt{6})^2$.

10. Найдите наибольшее натуральное двузначное число, которое при делении на 11 дает в остатке 7.

11. Результат упрощения выражения $\sin(11\pi - \alpha)$ равен:

1)
$$\sin \alpha$$
 2) $\cos \alpha$ 3) -1 4) $-\cos \alpha$ 5) $-\sin \alpha$

12. Среди чисел 0; 2; -14; -16; -2 выберите те, которые НЕ принадлежат множеству значений функции $y=3^{x-2}-14$.

1) 0 2) 2 3)
$$-14$$
 4) -16 5) -2

- **13.** Образующая конуса равна 17, а высота 8 . Найдите площадь боковой поверхности конуса. 1) 153π 2) 255π 3) $127,5\pi$ 4) 510π 5) 136π
- **14.** Укажите номер функции y = f(x), график которой получен из графика функции $y = \frac{1}{x}$ сдвигом его вдоль оси абсцисс на 2 единицы вправо и вдоль оси ординат на 1 единицу вниз.

1)
$$f(x) = \frac{1}{x+1} - 2$$
 2) $f(x) = \frac{1}{x+2} - 1$ 3) $f(x) = \frac{1}{x+2} + 1$ 4) $f(x) = \frac{1}{x-2} + 1$ 5) $f(x) = \frac{1}{x-2} - 1$

15. Найдите решение совокупности неравенств $\begin{bmatrix} -2 < 3 - \frac{x}{2} \leqslant 1, \\ x^2 < 4x. \end{bmatrix}$

1)
$$(0; 10)$$
 2) $(0; 4) \cup (4; 10)$ 3) $(0; 4) \cup (4; 10]$ 4) $[0; 4) \cup (4; 10)$ 5) $(-\infty; 10)$

16. Укажите номера уравнений, равносильных уравнению $\frac{2,5}{x-7} = \frac{4,1}{x+9}$.

1)
$$\log_2 x = 5$$
 2) $\log_5 x = 2$ 3) $\log_4 x = 32$ 4) $\log_{32} x = 0$ 5) $\log_{16} x = 1,25$

- **17.** Функция y = f(x) определена на множестве действительных чисел. Известно, что $f'(x) = (x-2)^3(x-7)^2(x+5)$. Найдите произведение точек экстремума функции y = f(x).
- **18.** В правильной треугольной пирамиде проведено сечение плоскостью, проходящей через боковое ребро и апофему противолежащей этому ребру боковой грани. Двугранный угол при ребре основания пирамиды равен 45°, а радиус окружности, описанной около сечения, равен $4\sqrt{5}$. Найдите объем пирамиды.

1)
$$48\sqrt{10}$$
 2) $96\sqrt{6}$ 3) $192\sqrt{6}$ 4) $128\sqrt{6}$ 5) $128\sqrt{5}$

19. На координатной плоскости даны точки A(-5; 1) и D(-5; -4). Точка C симметрична точке A относительно оси ординат, а точка B симметрична точке D относительно начала координат. Для начала каждого из предложений A–B подберите его окончание 1–6 так, чтобы получилось верное утверждение.

НАЧАЛО ПРЕДЛОЖЕНИЯ

- A) Длина большей диагонали четырехугольника ABCD равна ...
- Б) Длина наибольшей стороны четырехугольника ABCD равна ...
- В) Площадь четырехугольника АВСО равна ...

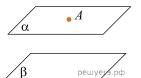
ОКОНЧАНИЕ ПРЕДЛОЖЕНИЯ

- 1) 30
- 2) 50
- 3) $5\sqrt{5}$
- 4) 40
- $\sqrt{41}$
- 6. $2\sqrt{4^{\circ}}$

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Помните, что некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: A1Б1B4.

20. В тупоугольном треугольнике ABC ($\angle C > 90^{\circ}$) BC = 4 и длины двух других сторон являются целыми числами. Периметр треугольника ABC равен 13. Для начала каждого из предложений A-B подберите его окончание 1-6 так, чтобы получилось верное утверждение.

НАЧАЛО ПРЕДЛОЖЕНИЯ


- А) Длина стороны AB треугольника ABC равна ...
- Б) Косинус угла *ВАС* треугольника *АВС* равен ...
- В) Площадь треугольника АВС равна ...

ОКОНЧАНИЕ ПРЕДЛОЖЕНИЯ

- $\frac{43}{48}$
- 2) 6
- 3) 5
- $\frac{\sqrt{455}}{4}$
- 29
- $\frac{7}{36}$
- $\frac{\sqrt{455}}{2}$

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Помните, что некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: A1Б1B4.

21. Выберите три верных утверждения, если известно, что точка A лежит в плоскости α , которая параллельна плоскости β (см. рис.).

- 1. Прямая, проходящая через точку A и пересекающая плоскость α , пересекает плоскость β .
- 2. Через точку A проходит единственная Плоскость, пересекающая плоско- \angle сти α и β .
 - 3. Существует единственная прямая, проходящая через точку A и параллельная плоскости β .
 - 4. Любая прямая, лежащая в плоскости β , параллельна плоскости α .
- 5. Если плоскости α и β пересечены третьей плоскостью, то прямые их пересечения параллельны между собой.
 - 6. Существует единственная прямая, проходящая через точку A и пересекающая плоскость β .

Ответ запишите цифрами (порядок записи цифр не имеет значения). Например: 123.

22. По углам прямоугольной пластины с периметром 448 см вырезали четыре одинаковых квадрата (см. рис.) с длиной стороны, равной 12 см. Края полученной заготовки загнули по линиям 1-4 и получили коробку в форме прямоугольного параллелепипеда объемом 48 дм³. Найдите площадь прямоугольной пластины (в дм²).

	2	
1		3
	рец4/егэ	.рф

23. Найдите значение выражения

$$\left(\frac{a^{\frac{1}{6}} + b^{\frac{1}{6}}}{2^{-1}}\right) : \left(\frac{b}{a^{\frac{5}{6}}} + \frac{b^{\frac{7}{6}}}{a}\right),$$

если a = 75 и b = 10.

24. Значение выражение $6 - 6 \cdot \log_5 x_0$, где x_0 — корень (наибольший корень, если их несколько) уравнения

$$\frac{3 + \log_5 x}{1 - \log_5 x} - \frac{8}{1 - \log_5^2 x} - 2 = 0,$$

равно?

25. Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K так, что BK = 2, CK = 3. Найдите значение выражения S^2 , где S — площадь параллелограмма ABCD, если величина угла A равна 60° .

26. Найдите наименьшее целое решение неравенства

$$2^{x-15} \cdot 5^{x-13} - 2^{x-11} \cdot 5^{x-15} > 9000.$$

27. Найдите произведение всех корней (корень, если он единственный) уравнения

$$\sqrt{x^4 - 25x^2 + 144} \cdot \sqrt{x^2 - 4x - 5} = 0.$$

28. О натуральных числах a и b известно, что $\frac{a}{b} = \frac{6}{17}$, НОД(a;b) = 4. Найдите НОК(a+b;10).

29. Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$, в котором $AD_1=\sqrt{10},\ DC_1=3\sqrt{2}$ и AC=4. Найдите значение выражения $\frac{42}{\cos^2\phi}$, где ϕ — угол между прямыми AD_1 и DC_1 .

30. Найдите (в градусах) наибольший корень уравнения

$$1 - \sin 17x = \left(\cos \frac{19x}{2} - \sin \frac{19x}{2}\right)^2$$

на промежутке [-45°; 180°).

31. Некоторое количество рабочих одинаковой квалификации выполнили работу за 14 дней. Если бы их было на 12 человек больше и каждый работал на 1 час в день дольше, та же работа была бы сделана за 10 дней. Если бы рабочих было еще на 18 человек больше и каждый работал еще на 1 час в день дольше, то эта работа была бы сделана за 7 дней. Найдите исходное количество рабочих.

32. Дан куб $ABCDA_1B_1C_1D_1$ с длиной ребра, равной 118. На ребрах BC и BB_1 взяты соответственно точки M и N так, что $\dfrac{BM}{MC}=\dfrac{2}{3}$ и $\dfrac{BN}{BB_1}=\dfrac{2}{5}$. Через точки M, N, A_1 проведена плоскость. Найдите расстояние d от точки C до этой плоскости. В ответ запишите значение выражения d^2 .